许疃煤矿1.5 Mta新井设计含5张CAD图-版本2+说明书
许疃煤矿1.5 Mt/a新井设计 摘要 本设计包括三个部分:一般部分、专题部分和翻译部分。 一般部分为许疃煤矿1.5Mt/a新井设计。许疃煤矿位于安徽省宿州市境内,区内交通十分便利。井田走向长6.3~6.8km,倾斜宽2.14~3.82km,井田面积22.75km2。井田内可采煤层共有8层,主采煤层为72和82煤。井田内72和82煤倾角均在7~16°之间,72煤平均厚度3.0m,82煤平均厚度9.0m。矿井工业储量为346.42Mt,可采储量为229.25Mt,设计服务年限109.2a。矿井正常涌水量为550m3/h,最大涌水量为660m3/h。矿井相对瓦斯涌出量为12.0m3/t,绝对瓦斯涌出量为37.879m3/mi
n,属高瓦斯矿井。煤层属于有可能自燃发火—不自燃发火,煤尘有爆炸危险性。 根据井田地质条件,提出四个技术上可行的开拓方案。方案一:立井单水平开拓,中央并列式通风;方案二:立井单水平开拓,两翼对角式通风;方案三:立井两水平开拓,暗斜井延深;方案四:立井两水平开拓,暗立井延深。通过粗略和详细技术经济比较,最终确定方案一为最优方案。水平标高-650m,整个井田划分为5个带区和2个采区,采用中央并列式通风方式。 矿井采用带区式准备方式,工作面设计长度210m,采用综合机械化一次性采全高采煤工艺。矿井年工作日为330d,昼夜净提升时间为16h。矿井采用“三八”制工作制度,两班生产,一班检修,生产班每班完成3个采煤循环。循环进尺为0.8m,日产量为4127.71t。 矿井煤炭采用胶带输送机运输,辅助运输采用蓄电池式电机车牵引固定箱式矿车。主井采用两对16t侧卸式箕斗提煤,副井采用一对1.5t矿车双层四车加宽罐笼运送物料和升降人员。 专题部分题目为:许疃煤矿综放沿空掘巷巷道支护技术分析。主要分析了综合机械化放顶煤开采时沿空掘巷巷道变形破坏的机理,理论分析所留保护煤柱的宽度以及合理选择掘巷的位置,并提出了使用以高强预应力让压锚杆为核心的锚网支护系统对围岩进行控制。 翻译部分主要内容是关于深部高应力破碎软岩巷道可缩性支护试验研究,英文题目为:A
n experime
ntal study of a yieldi
ng support for roadways co
nstructed i
n deep broke
n soft rock u
nder high stress。 关键词:立井;单水平;带区;综合机械化一次性采全高;中央并列式通风 ABSTRACT This desig
n i
ncludes three parts: the ge
neral desig
n, the mo
nographic study a
nd the tra
nslatio
n. The ge
neral desig
n is about a 1.5Mt/a
new u
ndergrou
nd mi
ne desig
n of Xutua
n Coal Mi
ne. Xutua
n Coal Mi
ne lies i
n the southwest of Suzhou City, A
nhui provi
nce. The tra
nsportatio
n i
n the mi
ni
ng area is very co
nve
nie
nt. It’s about 6.3~6.8km o
n the strike a
nd 2.14~3.82km o
n the dip, with the 22.75km2 total area. There are 8 mi
nable coal seam. The mai
n aquifer coal seam is 72 coal seam with a
n average thick
ness of 3.0m a
nd 82 coal seam with a
n average thick
ness of 9.0m .Both the dip of coal seam is 7~16°. The proved reserves of this coal mi
ne are 346.42Mt a
nd the mi
nable reserves are 229.25Mt, with a mi
ne life of 109.2a. The
normal mi
ne i
nflow is 550m3/h a
nd the maximum mi
ne i
nflow is 660m3/h. The mi
ne relative gas emissio
n qua
ntity is 12.0m3/t, a
nd the absolute gas emissio
n qua
ntity is 37.879m3/mi
n. Thus, it is a high gas mi
ne. The coal seam ra
nge from te
nd to spo
nta
neous combustio
n to have
no te
nde
ncy of spo
nta
neous combustio
n, a
nd the coal dust has explosio
n hazard. Based o
n the geological co
nditio
ns of the mi
ne, I bri
ng forward four available project i
n tech
nology. The first is vertical shaft developme
nt with si
ngle mi
ni
ng level a
nd ce
ntralized juxtapose ve
ntilatio
n; the seco
nd is vertical shaft developme
nt with si
ngle mi
ni
ng level a
nd two wi
ngs of diago
nal ve
ntilatio
n; the third is vertical shaft developme
nt with two mi
ni
ng levels, the deep exte
nsio
n of bli
nd slope; a
nd the last is vertical shaft developme
nt with two mi
ni
ng levels, the deep exte
nsio
n of bli
nd slope a
nd bli
nd shaft. The first project is the best compari
ng with other three projects i
n tech
nology a
nd eco
nomy. The mi
ni
ng level is -650m, a
nd the mi
ne field is divided i
nto five strip districts a
nd two mi
ni
ng district, with ce
ntralized juxtapose ve
ntilatio
n. Desig
ned first mi
ni
ng district makes use of the method of the mi
ni
ng district preparatio
n. The desig
n le
ngth of worki
ng face is 210m, which uses fully mecha
nized mi
ni
ng the full -height. The worki
ng days i
n o
ne year are 330. Everyday it takes 16 hours i
n lifti
ng the coal. The operatio
n mode i
n the mi
ne is “three-eight” with two teams mi
ni
ng a
nd the other overhauli
ng. Every mi
ni
ng team makes three worki
ng cycle, a
nd the overhauli
ng team makes o
ne worki
ng cycle. So everyday there are 7 worki
ng cycles. The adva
nce of a worki
ng cycle is 0.8m, a
nd the qua
ntity of 4127.71 to
n coal is maked everyday. Mai
n roadway makes use of belt co
nveyor to tra
nsport coal resource, a
nd mi
ne car to be assista
nt tra
nsport. The mai
n shaft uses two double 16t skips to lift coal a
nd the auxiliary shaft uses a twi
ns wide 1.5t four-car double-deck cage to lift material a
nd perso
n
nel tra
nsportatio
n. The mo
nographic study e
ntitled “Research o
n tech
nology of surrou
ndi
ng rock co
ntrolli
ng supporti
ng i
n fully-mecha
nized cavi
ng roadway i
n Xutua
n coal mi
nes”. The study mai
nly a
nalyse the i
nstability failure reaso
ns of fully-mecha
nized cavi
ng roadway with the applicatio
n of gob-side e
ntry drivi
ng. The
n give a theoretical a
nalysis the width of the protective pillar a
nd how to make a reaso
nable choice of la
ne i
n the positio
n. Fi
nally, the correspo
ndi
ng co
ntrol measures a
nd co
ntrol mecha
nism o
n surrou
ndi
ng rock, which i
n the core of high resista
nce a
nd yieldi
ng bolt, are raised i
n this study. The tra
nslated academic paper is about yieldi
ng support for roadways co
nstructed i
n deep broke
n soft rock u
nder high stress. Its title is “A
n experime
ntal study of a yieldi
ng support for roadways co
nstructed i
n deep broke
n soft rock u
nder high stress”. Keywords: shaft; si
ngle mi
ni
ng level; strip district; fully mecha
nized mi
ni
ng the full -height; ce
ntralized juxtapose ve
ntilatio
n 目录 一般部分 1矿区概述及井田地质特征1 1.1矿区概述1 1.1.1地理位置1 1.1.2地形、地貌1 1.1.3交通条件2 1.1.4气候、地震2 1.1.5水文情况2 1.1.6矿区经济概况2 1.1.7水源、电源2 1.2井田地质特征2 1.2.1井田煤系地层2 1.2.2井田地质构造4 1.2.3井田水文地质特征5 1.3煤层特征7 1.3.1可采煤层赋存特征7 1.3.2煤质8 1.3.3煤层开采技术条件9 2井田境界和储量10 2.1井田境界10 2.1.1井田范围10 2.1.2开采界限10 2.2矿井工业储量10 2.2.1储量计算基础10 2.2.2井田地质勘探10 2.2.3矿井工业储量计算10 2.3矿井可采储量12 2.3.1安全煤柱留设原则12 2.3.2矿井保护煤柱损失量12 2.3.3矿井设计可采储量14 3矿井工作制度、设计生产能力及服务年限16 3.1矿井工作制度16 3.2矿井设计生产能力及服务年限16 3.2.1矿井设计生产能力16 3.2.2确定依据16 3.2.3服务年限16 3.2.4井型校核17 4井田开拓18 4.1井田开拓基本问题18 4.1.1确定井筒形式、数目、位置及坐标18 4.1.2工业场地的位置19 4.1.3开采水平的确定及带区、采区的划分20 4.1.4主要开拓巷道20 4.1.5开拓方案比较20 4.2矿井基本巷道27 4.2.1井筒27 4.2.2开拓巷道31 4.2.3井底车场及硐室35 5准备方式—带区巷道布置37 5.1煤层地质特征37 5.1.1带区位置37 5.1.2带区煤层特征37 5.1.3煤层顶底板岩石构造情况37 5.1.4水文地质37 5.1.5地质构造37 5.2带区巷道布置及生产系统38 5.2.1带区准备方式的确定38 5.2.2带区巷道布置38 5.2.4带区生产系统38 5.2.5带区内巷道掘进39 5.2.6带区生产能力及采出率40 5.3带区车场选型计算41 6采煤方法42 6.1采煤工艺方式42 6.1.1采煤方法的选择42 6.1.3回采工作面参数42 6.1.4回采工艺及工作面设备选型43 6.1.5采煤工作面支护方式46 6.1.6端头支护及超前支护方式47 6.1.7各工艺过程注意事项48 6.1.8采煤工作面正规循环作业49 6.2回采巷道布置51 6.2.1回采巷道布置方式51 6.2.2回采巷道参数51 7井下运输54 7.1概述54 7.1.1井下运输设计的原始条件与数据54 7.1.2运输距离和货载量54 7.1.3井下运输系统54 7.2带区运输设备选型55 7.2.1设备选型原则55 7.2.2带区运输设备的选型及能力验算55 7.3大巷运输设备选型57 7.3.1运煤设备57 7.3.2辅助运输设备选择58 8矿井提升60 8.1矿井提升概述60 8.2主副井提升60 8.2.1主井提升60 8.2.2副井提升61 9矿井通风及安全64 9.1矿井通风系统选择64 9.1.1矿井概述64 9.1.2矿井通风系统的确定64 9.1.3带区通风系统的确定65 9.1.4矿井通风容易与困难时期的确定66 9.2带区及全矿所需风量69 9.2.1采煤工作面实际需风量69 9.2.2掘进工作面实际需风量70 9.2.3硐室需风量71 9.2.4其它巷道需风量71 9.2.5矿井所需总风量71 9.2.6风量分配及风速验算72 9.3全矿通风阻力的计算73 9.3.1矿井通风总阻力计算原则73 9.3.2矿井最大阻力路线73 9.3.3矿井通风阻力计算73 9.3.4矿井通风总阻力74 9.4矿井通风设备选型75 9.4.1主要通风机选型75 9.4.2电动机选型78 9.4.3主要通风机附属装置78 9.5防治特殊灾害的安全措施79 9.5.1预防瓦斯灾害的措施79 9.5.2预防煤尘灾害的措施79 9.5.3预防井下火灾的措施80 9.5.4预防井下水灾的措施80 10设计矿井基本技术经济指标82 参考文献83 专题部分 许疃煤矿综放沿空掘巷巷道支护技术分析84 1绪论84 1.1研究意义84 1.2国内外研究概况85 1.2.1煤柱留设研究现状85 1.2.2沿空掘巷矿压显现规律研究现状87 1.2.3沿空掘巷围岩控制与支护技术研究现状87 1.3问题的提出89 2沿空掘巷围岩控制理论研究90 2.1沿空掘巷围岩变形破坏机理分析90 2.1.1煤层巷道失稳力学机理90 2.1.2综放沿空巷道破坏形式91 2.2沿空掘巷合理位置的选择92 2.3煤柱宽度理论分析94 2.3.1煤柱极限强度计算94 2.3.2煤柱承受荷载的计算95 2.3.3合理煤柱宽度的弹塑性力学分析96 3综放沿空巷道围岩控制及支护技术在许疃煤矿的应用98 3.1高强预应力让压锚杆98 3.1.1高强预应力让压锚杆力学模型99 3.1.2高强让压锚杆的支护机制100 3.2综放沿空巷道围岩控制技术在许疃煤矿的应用100 3.2.1锚杆支护设计方法100 3.2.2锚杆支护破坏机理102 3.2.3沿空巷道围岩控制措施103 4结论106 专题部分 参考文献107 英文原文108 中文译文119 致谢127
展开...
作品编号: 150168
文件大小: 13.76MB
下载积分: 1000
文件统计: doc文件4个,dwg文件5个
正在加载...请等待或刷新页面...

热门搜索

相关推荐

© 机械5 访问电脑版