捷达轿车前盘式制动器、后鼓式制动器设计(cad图纸装配图+零件图+设计说明书)
(1)研究、确定制动系统的构成 (2)汽车必需制动力及其前后分配的确定 前提条件一经确定,与前项的系统的研究、确定的同时,研究汽车必需的制动力并把它们适当地分配到前后轴上,确定每个车轮制动器必需的制动力。 (3)确定制动器制动力、摩擦片寿命及构造、参数 制动器必需制动力求出后,考虑摩擦片寿命和由轮胎尺寸等所限制的空间,选定制动器的型式、构造和参数,绘制布置图,进行制动力制动力矩计算、摩擦磨损计算。 (4)制动器零件设计 零件设计、材料、强度、耐久性及装配性等的研究确定,进行工作图设计。 2.9.1制动鼓 制动鼓应具有高的刚性和大的热容量,制动时其温升不应超过极限值。制动鼓的材料与摩擦衬片的材料相匹配,应能保证具有高的摩擦系数并使工作表面磨损均匀。中型、重型货车和中型、大型客车多采用灰铸铁HT200或合金铸铁制造的制动鼓(图2.13(a));轻型货车和一些轿车则采用由钢板冲压成形的辐板与铸铁鼓筒部分铸成一体的组合式制动鼓(图2.13(b));带有灰铸铁内鼓筒的铸铝合金制动鼓(图2.12(c))在轿车上得到了日益广泛的应用,其耐磨性和散热性都很好,而且减小了质量。 (a)铸造制动鼓;(b),(c)组合式制动鼓 1冲压成形辐板;2铸铁鼓筒;3灰铸铁内鼓;4铸铝台金制动鼓 图2.13制动鼓 制动鼓相对于轮毂的对中如图2.12所示,是以直径为的圆柱表面的配合来定位,并在两者装配紧固后精加工制动鼓内工作表面,以保证两者的轴线重合。两者装配后需进行动平衡。许用不平衡度对轿车为15~20Ncm;对货车为30~40Ncm。 制动鼓壁厚的选取主要是从刚度和强度方面考虑。壁厚取大些也有助于增大热容量,但试验表明,壁厚从11mm增至20mm,摩擦表面平均最高温度变化并不大。一般铸造制动鼓的壁厚:轿车为7~12mm,中、重型货车为13~18mm。制动鼓在闭口一侧可开小孔,用于检查制动器间隙。 捷达属于乘用车,因此本设计制动鼓采用HT200灰铸铁铸造,制动鼓壁的厚度选取12mm。 2.9.2制动蹄 轿车和轻型、微型货车的制动蹄广泛采用T形型钢辗压或钢板冲压焊接制成;大吨位货车的制动蹄则多用铸铁、铸钢或铸铝合金制成。制动蹄的断面形状和尺寸应保证其刚度好,但小型车钢板制的制动蹄腹板上有时开有一、两条径向槽,使蹄的弯曲刚度小些,以便使制动蹄摩擦衬片与鼓之间的接触压力均匀,因而使衬片磨损较为均匀,并减少制动时的尖叫声。重型汽车制动蹄的断面有工字形、山字形和Ⅱ字形几种。制动蹄腹板和翼缘的厚度,轿车的约为35mm;货车的约为5~8mm。摩擦衬片的厚度,轿车多用4.5~5mm;货车多在8mm以上。衬片可以铆接或粘接在制动蹄上,粘接的允许其磨损厚度较大,但不易更换衬片;铆接的噪声较校 因此,本设计制动蹄采用热轧钢板冲压焊接制成,制动蹄腹板和翼缘的厚度分别取5mm和6mm。 2.9.3制动底板 制动底板是除制动鼓外制动器各零件的安装基体,应保证各安装零件相互间的正确位置。制动底板承受着制动器工作时的制动反力矩,故应有足够的刚度。为此,由钢板冲压成形的制动底板都具有凹凸起伏的形状。重型汽车则采用可锻铸铁KTH 37012的制动底座以代替钢板冲压的制动底板。刚度不足会导致制动力矩减小,踏板行程加大,衬片磨损也不均匀。 因此,本设计制动底板采用热轧钢板冲压成形,制动底板的厚度取5mm。 2.9.4制动蹄的支承 二自由度制动蹄的支承,结构简单,并能使制动蹄相对制动鼓自行定位。为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,应使支承位置可调。例如采用偏心支承销或偏心轮。支承销由45号钢制造并高频淬火。其支座为可锻铸铁(KTH 37012)或球墨铸铁(QT 40018)件。青铜偏心轮可保持制动蹄腹板上的支承孔的完好性并防止这些零件的腐蚀磨损。 具有长支承销的支承能可靠地保持制动蹄的正确安装位置,避免侧向偏摆。有时在制动底板上附加一压紧装置,使制动蹄中部靠向制动底板,而在轮缸活塞顶块上或在张开机构调整推杆端部开槽供制动蹄腹板张开端插入,以保持制动蹄的正确位置。 本设计为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,采用支承销。 2.9.5制动轮缸 是液压制动系采用的活塞式制动蹄张开机构,其结构简单,在车轮制动器中布置方便。轮缸的缸体由灰铸铁HT250制成。其缸筒为通孔,需搪磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶块,以支承插入槽中的制动蹄腹板端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处的橡胶皮碗密封。多数制动轮缸有两个等直径活塞;少数有四个等直径活塞;双领蹄式制动器的两蹄则各用一个单活塞制动轮缸推动。由于采用的是领从蹄式的制动器,缸体材料采用HT250的铸铁,两个活塞推动。 2.9.6.制动盘 制动盘一般由珠光体灰铸铁制成,其结构形状有平板形和礼帽形两种。后一种的圆柱部分长度取决于布置尺寸。为了改善冷却,有的钳盘式制动器的制动盘铸成中间有径向通风槽的双层盘,可大大增加散热面积,但盘的整体厚度较大。制动盘的工作表面应光滑平整。两侧表面不平行度不应大于0.008mm,盘面摆差不应大于0.1mm。本设计采用通风式制动盘。 2.9.7制动钳 制动钳由可锻铸铁K TH37012或球墨铸铁QT40018制造,也有用轻合金制造的,可做成整体的,也可做成两个由螺栓连接。其外缘留有开口,以便不必拆下制动钳便可检查或更换制动块。制动钳体应有高的强度和刚度。一般多在钳体中加工出制动油缸,也有将单独制造的油缸装嵌入钳体中的。为了减少传给制动液的热量,多将杯形活塞的开口端顶靠制动块的背板。活塞由铸铝合金或钢制造。为了提高耐磨损性能,活塞的工作表面进行镀铬处理。 2.9.8制动块 制动块由背板和摩擦衬块构成,两者直接压嵌在一起。衬块多为扇面形,也有矩 形、正方形或长圆形的。活塞应能压住尽量多的制动块面积,以免衬块发生卷角而引 起尖叫声。制动块背板由钢板制成。许多盘式制动器装有衬块磨损达极限时的警报装,以便及时更换摩擦衬片。制动块的厚度取14mm。 2.9.9摩擦材料 制动摩擦材料应具有高而稳定的摩擦系数,抗热衰退性能好,不能在温度升到某一数值后摩擦系数突然急剧下降;材料的耐磨性好,吸水率低,有较高的耐挤压和耐冲击性能;制动时不产生噪声和不良气味,应尽量采用少污染和对人体无害的材料。 目前在制动器中广泛采用着模压材料,它是以石棉纤维为主并与树脂粘结剂、调整摩擦性能的填充剂(由无机粉粒及橡胶、聚合树脂等配成)与噪声消除剂(主要成分为石墨)等混合后,在高温下模压成型的。模压材料的挠性较差,故应按衬片规格模压,其优点是可以选用各种不同的聚合树脂配料,使衬片具有不同的摩擦性能和其他性能。 各种摩擦材料摩擦系数的稳定值约为0.3~0.5,少数可达0.7。设计计算制动器时一般取0.3~0.35。选用摩擦材料时应注意,一般说来,摩擦系数愈高的材料其耐磨性愈差。 目录 摘要I 目录II 第1章绪论1 1.1制动系统设计的意义1 1.2制动系统研究现状1 1.3制动系统设计内容2 1.4制动系统设计要求2 第2章制动器设计计算4 2.1捷达车的主要技术参数4 2.2制动系统的主要参数及其选择4 2.2.1同步附着系数4 2.2.2制动强度和附着系数利用率7 2.2.3制动器最大的制动力矩10 2.3制动器因数和制动蹄因数11 2.4制动器的结构参数与摩擦系数16 2.4.1鼓式制动器的结构参数16 2.4.2盘式制动器的结构参数19 2.5制动器的设计计算20 2.5.1制动蹄摩擦面的压力分布规律20 2.5.2制动器因数及摩擦力矩分析计算24 2.5.3制动蹄片上的制动力矩26 2.6摩擦衬片的磨损特性计算34 2.7制动器的热容量和温升的核算35 2.8驻车制动计算37 2.9制动器主要零件的结构设计39 2.9.1制动鼓39 2.9.2制动蹄40 2.9.3制动底板41 2.9.4制动蹄的支承41 2.9.5制动轮缸41 2.9.6制动盘42 2.9.7制动块42 2.9.8摩擦材料42 2.9.9制动摩擦衬片43 2.9.10制动器间隙43 第3章制动驱动机构的设计计算49 3.1轮缸直径与工作容积49 3.1.1盘式制动器直径与工作容积50 3.1.2鼓式制动器直径与工作容积51 3.2制动主缸直径与工作容积51 3.3制动轮缸活塞宽度与缸筒的壁厚52 3.3.1盘式制动轮缸活塞宽度与缸筒壁厚52 3.3.2盘式制动器活塞宽度与缸筒壁厚53 3.4制动主缸行程的计算54 3.5制动主缸活塞宽度与缸筒的壁厚55 3.5.1制动主缸活塞宽度55 3.6制动踏板力与踏板行程55 结论58 参考文献59 致谢60
展开...
作品编号: 8190
文件大小: 2.41MB
下载积分: 200
文件统计: doc文件2个,dwg文件3个
正在加载...请等待或刷新页面...

热门搜索

相关推荐

© 机械5 访问电脑版